
June 2025

ALGEM

LIQUID

FARMING
S E C U R I T Y A U D I T

2

Contents

Summary

Audit Methodology

Audit scope

 Vulnerability Founds

 Explain Findings

Conclusion

Disclaimers

3

3

4

5

6

36

37

Summary
ALgem Farming is a yield farming aggregator that allows
users to deposit liquidity into vaults that farm on DEXes.
Users receive dual rewards: farming rewards from the
underlying DEX plus additional ALGM token incentives from
the protocol, with progressive benefits for ALGM stakers.

Project:

Website:

3

www.algm.io

ALgem Farming

Audit
Methodology
Manual review is the primary methodology used to identify
vulnerabilities in smart contracts.

The objective of the audit is to increase security and
provide solutions to resolve potential bugs that could
undermine trust in a project.

http://www.algm.io/

4

Audit Scope

The contracts that are in the scope of this audit are

the following:

Contract 1 Vault.sol

Contract 2 Pool.sol

Contract 3 Different Dapps

5

Vulnerability

Founds

Findings:

5 High - Severity

3 Low - Severity

4 Medium - Severity

6

Explain Findings

High Severity

H - 01 KyoVaultV3 => deposit - Loss of funds and

inflact all the calculations if small amounts of tokens

are deposited into Vault.

It is possible to deposit small amounts of tokens in

the protocol even if the amount of lWRAPPED

tokens minted is 0.

This will lead to users losing funds because they

cannot retrieve their tokens if the lWRAPPED

balance is 0.

At the same time, this will inflate all calculations.

Description:

Details:

Users are allowed to deposit amounts of tokens in

the vault to interact with a Uniswap V3 pool and get

rewards.

Once a user deposits in the Vault, will get back half

the amount of the value sent in WETH as lWRAPPED

tokens.

7

```
function deposit(uint256 _amount) external payable
whenNotPaused updater {
      ...

    //half of user value is minted as LWRAPPED token
    uint256 wa = (amount1 +
getSecondAmount(uint128(amount0), true)) / 2;

1.     p.wrapped += was;
     ...
}

```

There is no validation to ensure the minted
lWRAPPED amount exceeds zero.
This creates a risk of fund loss for users, as those
who receive zero lWRAPPED tokens cannot recover
their deposits through the redeem or withdraw
functions.
At the same time, all calculations could be inflated
because the amount of tokens in the pool will
increase while the lWRAPPED supply remains the
same, leading to a mismatch in calculations.

8

PoC:

```
function test_depositRedeemSmallAmounts()public{

    vm.warp(block.timestamp + 86400);
  
    IERC20(pair).approve(address(v3vault), 1000 ether);
    v3vault.deposit{value: 1 ether}(1 ether);

    vm.startPrank(user1);
    IERC20(pair).approve(address(v3vault), 1000 ether);
    v3vault.deposit{value: 10000 wei}(10000 wei);
    vm.stopPrank();

    vm.warp(block.timestamp + v3vault.FINISH());
  
    vm.startPrank(user1);
    v3vault.redeem();
}
```

Impact:

Users lose funds and inflate calculations

Mitigation:

Add a check in deposit function that ensure the min
amount of lWRAPPED tokens minted is more than 0.

Status:

Solved

9

H - 02 KyoVaultV3 => liquidate - Liquidation is

impossible due to a logic error in liquidate function

The liquidate() function contains multiple critical

arithmetic and logic errors that prevent all

liquidations from executing successfully.

The function fails with arithmetic

underflow/overflow panics, making the liquidation

mechanism completely non-functional and breaking

a core protocol safety feature.

Description:

Details:

The liquidation mechanism is designed to maintain

the 1:1 ratio between WRAPPED and lWRAPPED

tokens by liquidating under-collateralized positions

when their Health Factor falls below

LIQUIDATION_THRESHOLD.

However, the implementation contains several bugs:


```
function liquidate(address _user) external updater {
      ...

    (uint256 amount0, uint256 amount1) =
decreaseLiquidity(getUserLP(_user)); 
    (int256 amount0Delta,) = swap(-int256(p.wrapped -
amount1), true); amount0 -= uint256(amount0Delta); 
   ... 
 }

```

Issue 2.1 - Wrong Swap Direction:
When amount1 > p.wrapped (excess WETH received
from liquidity), the calculation p.wrapped - amount1
becomes negative. The operation -
int256(negative_value) becomes positive, causing
the swap to attempt buying WETH instead of selling
the excess.

Issue 2.2 - Arithmetic Underflow in uint256 Casting:
When amount0Delta is negative (which occurs during
normal swap operations), uint256(amount0Delta)
causes an arithmetic overflow, converting the
negative value to a massive positive number.

Issue 2.3 - Subtraction Underflow:
The operation amount0 -= uint256(amount0Delta)
with an overflowed positive value causes arithmetic
underflow when subtracting from amount0.

10

Impact:

Complete Liquidation Mechanism Breakdown:

All liquidation attempts fail with panic errors.

Undercollateralized Positions Cannot Be

Liquidated:

Positions with HF < threshold remain active.

Protocol Insolvency Risk:

 Bad debt accumulation without liquidation

mechanism.

1:1 WRAPPED/lWRAPPED Peg Failure:

Core protocol invariant cannot be maintained.

Mitigation:

The fix implements proper case handling for all

possible scenarios during liquidation and uses safe

arithmetic operations to prevent

overflow/underflow errors.

Root Cause Resolution: The corrected code replaces

the single-case assumption with comprehensive logic

that handles three distinct scenarios:

1. Insufficient WETH case (amount1 < p.wrapped):

When the liquidity withdrawal provides less WETH

than required, the function correctly executes a

buy swap to acquire the needed WETH amount.

2.Excess WETH case (amount1 > p.wrapped): When

the liquidity withdrawal provides more WETH than

needed, the function now properly executes a sell

swap to convert the excess WETH into pair

tokens.

3.Perfect match case (amount1 == p.wrapped):

When the amounts match exactly, no swap is

performed, eliminating unnecessary gas costs and

slippage.

11

function liquidate(address _user) external updater {
 Position storage p = positions[_user];

 uint256 hf = getHF(_user);
 if (hf < LIQUIDATION_THRESHOLD) {
 _claim(_user, false);
 _unstakeALGM(_user, userALGMBalance[_user]);

 p.finish = block.timestamp;
 (uint256 amount0, uint256 amount1) =
decreaseLiquidity(getUserLP(_user))

 if (amount1 < p.wrapped) {
 console.log("Need to buy more WETH");
 (int256 amount0Delta,) = swap(-int256(p.wrapped -
amount1), true);
 amount0 = uint256(int256(amount0) + amount0Delta);
 } else if (amount1 > p.wrapped) {
 (int256 amount0Delta,) = swap(int256(amount1 -
p.wrapped), false);
 amount0 = uint256(int256(amount0) + amount0Delta);
 }

 totalTokenBalance += amount0;
 p.token = amount0;
 totalWRAPPEDBalance += p.wrapped;

 emit Liquidated(_user, p.wrapped, amount0);
 }
}

12

Status:

Solved

This approach correctly handles both positive and

negative amount0Delta values returned by Uniswap

V3 swaps, where negative values indicate tokens

received and positive values indicate tokens owed.

Additional Security Enhancements: It is also

recommended to implement reentrancy protection

(H3 bug will show the reentrancy using the old/new

code for liquidation) and liquidation incentives for

external actors.

13

H - 03 KyoVaultV3 => liquidate - Reentrancy attack

in liquidate function.

There is no reentrancy check on the liquidate

function.

This will lead to a reentrancy attack on the liquidate

function.

Description:

Details:

function liquidate(address _user) external updater {
 Position storage p = positions[_user];

 uint256 hf = getHF(_user);
 if (hf < LIQUIDATION_THRESHOLD) {
 _claim(_user, false);
 _unstakeALGM(_user, userALGMBalance[_user]);

 p.finish = block.timestamp;
 (uint256 amount0, uint256 amount1) =
decreaseLiquidity(getUserLP(_user))

 ...
 }
}

14

As it is possible to check from the liquidation
function, there is a call to the _claim() function that
performs some calculations and sends back the
native tokens to the user in liquidation.

Many operations in the liquidate functions are
performed after the _claim() call.

Supposing the user is a contract, there is the
possibility of calling liquidation repeatedly using the
receive() function.

Impact:

Fund drainage: Multiple liquidations allow

extraction of more ETH/tokens than deserved

State corruption: Variables

totalWRAPPEDBalance, supp, positions get

manipulated

Protocol collapse: Potential vault insolvency

This means that a user can call the liquidate function

recursively, liquidating always the same position.

Status:

Solved

15

Mitigation:

Add nonReentrant modifier.

PoC:

```
function test_liquidateReenter()public{
    vm.warp(block.timestamp + 86400);

    IERC20(pair).approve(address(v3vault), 1000 ether);
    v3vault.deposit{value: 1 ether}(1 ether);

    vm.startPrank(user1);
    IERC20(pair).approve(address(v3vault), 1000 ether);
    v3vault.deposit{value: 2 ether}(2 ether);

    vm.warp(block.timestamp + 86400);

    v3vault.liquidate(address(this));
    vm.stopPrank();
}

receive() external payable {
    console.log("IN RECEIVE FUNCTION");
    v3vault.liquidate(address(this));
    }
}

```

16

17

H - 04 KyoVaultV3 => withdraw, redeem, liquidate
-These functions suffer logic problems that can lead
to insolvency for protocol.

Description:

Details:

Some price movements from the market can lead
the protocol to insolvency, because the amounts of
ETH from the swaps can be lower than the amount
set as p.wrapped from the user when depositing.

Liquidate() function

The liquidate() function is triggered when the value of
a user's collateral falls below the liquidation threshold
required by the protocol.

At this point, when liquidation is called, it performs a
swap directly to the pool and gets an amount of ETH.

The amount of ETH received from this swap should
be the p.wrapped amount of the user that is set
when a user initially deposits into the protocol.

If the market falls, and a user goes into liquidation,
the amount from the swap() call could be lower than
the actual p.wrapped, leading to insolvency because
the liquidated user can't redeem the real amount
obtained and then can't use the protocol anymore
due to the logic of the contract that doesn't permit a
new deposit if the user hasn't redeemed the position.

18

Withdraw () function

The withdraw() function is called when the value

expires and has the same problem as liquidate above.

If the market falls and the withdrawal function is

callable, it can lead to insolvency due to the same

logic as liquidation.

Extra:

The withdraw() function lacks the update to the supp

variable, which leads to incorrect calculations for

getUserLP, which can be used for redemption

Redeem() function

The redeem() function has different execution

branches.

If the market falls and redeem() is called, it can lead to

insolvency due to the same underlying logic flaw

present in both liquidate() and withdraw() functions.

Impact:

Insolvency.

Risk of wrong calculations in other parts of the

contracts.

Exclude users from using the protocol.

User fund lock.

19

PoC:

function test_ExtremePriceManipulation() public {
 console.log("=== TEST: Extreme Price Manipulation ===");

 vm.warp(v3vault.START() + 1000);

 uint256 input = 1 ether;
 deposit(input, user1);

 vm.startPrank(user3);
 IERC20(pair).approve(address(v3vault), 1000 ether);
 v3vault.deposit{value: 5 ether}(5 ether);
 vm.stopPrank();

 vm.warp(v3vault.START() + 86400);

 // === Extreme Price Manipulation ===
 priceImpact(user1);

 // vm.warp(block.timestamp + v3vault.FINISH());

 // ==== LIQUIDATION TEST AFTER PRICE IMPACT ======
 //v3vault.liquidate(user1);

 //// ==== REDEEM TEST AFTER PRICE IMPACT ======
 vm.startPrank(user1);
 v3vault.redeem();
 vm.stopPrank();

 //// ==== WITHDRAW TEST AFTER PRICE IMPACT ======
 //vm.startPrank(user1);
 //v3vault.withdraw(IERC20(lwrapped).balanceOf(user1));
 //vm.stopPrank();
 }

20

Status:

Solved

Mitigation:

Redesign the underlying logic to prevent protocol

insolvency.

Check every single variable that is part of the

calculations:

supp

totalWrappedBalance

...

From Protocol:

“The core idea of the protocol is to supply minted

LWRAPPEDs with ETH. If market falls really deep in a

moment, we will not be able to supply it anyways

until the price settled back. Our workaround here is

the liquidation script mechanism, which is checking

for such conditions on a hourly rate and liquidates

those risky positions before the insolvency occurred.

Other approach implies that we would burn

LWRAPPED in other than 1:1 ratio which is not

suitable for the core idea.”

...

H-05 KyoVaultV3 =>Logic error in liquidate()

function, let the HF stable during time.

Description:

The liquidation mechanism fails to protect the

protocol during price manipulation attacks because

Health Factor calculations rely on TWAP prices

instead of real-time spot prices, allowing underwater

positions to avoid liquidation.

Details:

The liquidation system contains a fundamental

design flaw where Health Factor calculations use

time-averaged prices that don't reflect current

market conditions:

21

function liquidate(address _user) external nonReentrant

updater {

 Position storage p = positions[_user];

 uint256 hf = getHF(_user);

 if (hf < LIQUIDATION_THRESHOLD) {

 ...

 }

 }

The getHF() call during the flow calls other 2 functions

in the contract get a HF result:

calculateRemoveLiquidity()

getSecondAmount()

These two functions internally use the TWAP price of

the pool to determine the HF of a user, but at the

same time, the TWAP price reflects an average of 1

hour.

This means that if someone manipulates NOW the

pool, the HF will be stable, because the TWAP price

doesn’t recognize the actual manipulation.

Impact

A user that should be liquidate still get the HF above

the LIQUIDATION_THRESHOLD.

22

PoC

A user that should be liquidate still get the HF above

the LIQUIDATION_THRESHOLD.

function test_Liquidations() public {

 console.log("=== TEST: Liquidation ===");

 vm.warp(v3vault.START() + 86400);

 vm.startPrank(user6);

 vm.warp(block.timestamp + 50);

 vm.roll(block.number + 3);

 IERC20(pair).approve(address(v3vault), 1000 ether);

 v3vault.deposit{value: 0.1 ether}(100 ether);

 vm.stopPrank();

 console.log("getHF user6 Before", v3vault.getHF(user6));

 priceImpactSendETH(user6, 1000 ether);

 console.log("getHF user6 After", v3vault.getHF(user6));

 vm.startPrank(user7);

 v3vault.liquidate(user6);

 vm.stopPrank();

 }

23

 In the provided test, we see exactly this issue:

Multiple large swaps dramatically change spot

price

Health Factor remains constant at 199% despite

a price movements

Liquidation never triggers despite significant price

manipulation

Status:

Solved

Mitigation:

The liquidate function should get the HF based on the

slot0 prices to reflect the real-time changes.

24

M- 01 VelodromeV3 =>setTWAPparams - Missing

function to setTWAPparams.

Description:

The setTWAPparams() function is missing in the

Velodrome vault.

Mitigation:

Add the same setTWAPparams() function that is

used in the other dapps.

Status:

Solved

Medium Severity

M- 02 KyoVaultV3 =>Triple call on calculate

removeLiquidity() function in the deposit()

function could lead to inconsistency in calculation

- Redundant calls in the deposit functions

Description:

Calling the calculateRemoveLiquidity three times in

the deposit function could lead to inconsistent

calculations.

Details:

The Deposit() function calls internally three times the

calculateRemoveLiquidity() function and this can

create inconsistency between values that are

passed then to the other calls of the deposit.

25

function deposit(uint256 _amount) external payable

whenNotPaused updater {

 uint256 cr = getCurrentRound();

 Position storage p = positions[msg.sender];

 _checkIfCanDeposit(_amount, msg.value, p, cr);

 if (msg.value > 0) {

 IWETH9(WRAPPED).deposit{value: msg.value}();

 }

 if (_amount > 0) {

 IERC20(pairToken).safeTransferFrom(msg.sender,

address(this), _amount);

 }

 uint256 cratio = getCurrentRatio();

 uint256 a0;

 uint256 a1;

 if (cratio < targetRatio - targetRatio / 10 || cratio >

targetRatio + targetRatio / 10) {

 uint128 tb = uint128(totalBalance());

 uint256[2] memory crl = calculateRemoveLiquidity(tb);

 uint256 nratio = getNewRatio(crl[0] + _amount +

dustLeft[0], crl[1] + msg.value + dustLeft[1]);

 nratio = cratio < targetRatio

 ? nratio > targetRatio ? targetRatio : nratio

 : nratio < targetRatio ? targetRatio : nratio;

 (a0, a1) = decreaseLiquidity(tb);

 (positionParameters.tickL, positionParameters.tickU) =

getNewTicks(nratio);

 }

26

As it is possible to check, the deposit() function calls

the calculateRemoveLiquidity in:

getCurrentRatio()

calculateRemoveLiquidity()

getNewRatio

This can create inconsistency between calculations in

the flow of deposit() function that could leads to

wrong calculations.

Status:

Solved

Mitigation:

Re-think the logic behind the deposit function to use

consistency values between the calls and prevent

wrong calculations.

Impact

Wrong calculations can be perform.

27

M - 03 KyoVaultV3 => getPrice, getTick,
getBounds - These functions are based on the
pool.slot0() calculations that could be easily
manipulated.

A Market Manipulation Attack can be performed on
the pool to impact the calculations that are made by
these 3 functions.

Description:

Details:

 function getPrice() internal view returns (uint160 price) {
 (price,,,,,,) = v3pool.slot0();
 console.log("price from get price", price);
 }

 function getTick() internal view returns (int24 tick) {
 (, tick,,,,,) = v3pool.slot0();
 }

 function getBounds() external view returns (uint256,
uint256, uint256, bool) {
 (, int24 tick,,,,,) = v3pool.slot0();
 uint256 pl = getPriceAtTick(positionParameters.tickL);
 uint256 pc = getPriceAtTick(tick);
 uint256 pu = getPriceAtTick(positionParameters.tickU);
 return (pl, pc, pu, pc >= pl && pc <= pu);
 }

28

Impact:

Wrong calculations: Every protocol interaction

can be easily manipulated from anyone.

Protocol collapse: Potential vault insolvency

The data pulled from Uniswap.slot0, which is the

most recent data point, can be easily manipulated via

MEV bots and Flashloans with sandwich attacks,

potentially causing the loss of funds when

interacting with Uniswap.swap function.

This could lead to wrong calculations and loss of

funds for the protocol and other users

Status:

Solved

Mitigation:

Use the TWAP price and deviation check, which will be

compared to slot0 to get a reasonable sqrtPriceX96.

TWAP is a pricing algorithm used to calculate the

average price of an asset over a set period.

It is calculated by summing prices at multiple points

across a set period and then dividing this total by the

total number of price points

29

M-04 KyoVaultV3 =>calculateAddLiquidity - Add

and compare the TWAP price to the slot0 price and

add a deviation check.

Description:

The protocol lacks price deviation checks between

TWAP and spot prices in liquidity calculations,

enabling price manipulation attacks during deposits.

Details:

The `calculateAddLiquidity` function uses spot price

from `slot0()` without validating against TWAP,

allowing attackers to exploit temporary price

manipulations:

function calculateAddLiquidity(uint256 _amount0, uint256

amount1) public view returns (uint128 liquidity) {

 uint160 sqrtRatioX96 = getPrice();

 //(, uint160 TWAPsqrtRatioX96) = getTWData();

 uint160 sqrtRatioAX96 =

);

 }

 }

30

At this point, the manipulation that can be made are

differents and you can refer to the M-03 bug.

The correct way to prevents a manipulation could be

the compare between the slot0 and TWAP price and

calculate a deviation or a series of deviations that

could be accepted.

function calculateAddLiquidity(uint256 _amount0, uint256

amount1) public view returns (uint128 liquidity) {

 uint160 sqrtRatioX96 = getPrice();

 (, uint160 TWAPsqrtRatioX96) = getTWData();

 uint256 deviation = sqrtRatioX96 > TWAPsqrtRatioX96

 ? ((sqrtRatioX96 - TWAPsqrtRatioX96) * 10000) /

TWAPsqrtRatioX96

 : ((TWAPsqrtRatioX96 - sqrtRatioX96) * 10000) /

TWAPsqrtRatioX96;

 if (deviation > 500 && deviation < 1000) {

 }

 else{

 }

;

31

The logic behind this check is simple.

Limit/prevents situations where the prices are

inflated and could leads to loss of funds for users.

The Price deviation thresholds should vary by asset

volatility:

Stablecoins (USDC/USDT): 1-2% max deviation

acceptable

Volatile pairs (ETH/ALT): 5-10% max deviation

acceptable

Exotic pairs: Higher thresholds may be required

Implement graduated protection with deviation-

based controls:

These examples can be used as a demonstration of

the logic suggested to limit/prevents manipulations

from bad actors that could lead to loss of funds for

users.

The same logic could be added even to the

calculateRemoveLiquidity but using more permissive

parameters.

Impact

Manipulated prices could be used.

32

Status:

Solved

Mitigation:

Implement graduated protection with deviation-

based controls.

33

L - 01 V3Caller.sol => increaseLiquidity - Unused

calculations.

Low Severity

The calculateRemoveLiquidity function is called but

its return value is never used within the function

scope.

Description:

Mitigation:

Remove the calculateRemoveLiquidity call from the

function to eliminate unnecessary calls.

Status:

Solved

34

L - 02 All the contracts missing a gap, for future

implementations

Description:

Missing storage gap for future implementations in all

upgradeable contracts

L - 03 Vault.sol => setALGMStaking - ALGM

Staking Contract can’t be set more than once.

If the ALGM staking contract encounters issues, the

Vault lacks functionality to update the contract

reference. This forces a complete redeployment of

all contracts rather than simply updating the staking

address.

Description:

Mitigation:

Add a storage gap (e.g., uint256[50] private __gap;)

at the end of each upgradeable contract to reserve

storage slots for future variables.

Status:

Solved

35

Mitigation:

Remove the

require(address(algmStaking) == address(0));

check, in the setALGMStaking() function

Status:

Solved

36

Conclusion

Post-analysis review confirms that all critical and

non-critical issues identified in the smart contracts

have been successfully addressed.

The implemented solutions ensure protocol

integrity and provide robust protection against

potential security threats.

37

Disclaimer
I analyzed these smart contracts following industry

best practices current at the date of this report,

focusing on vulnerabilities and issues within the

smart contract source code as detailed in this

report.

it is crucial to understand that this report should not

serve as your sole security assessment.

I strongly recommend implementing a bug bounty

program to validate the security level of these

smart contracts.

I bear no responsibility for fund safety and accepts

no liability for project security.

Smart contracts operate on blockchain platforms,

and the underlying platform, programming

languages, and related software may contain

inherent vulnerabilities that could enable attacks.

Therefore, this audit cannot provide absolute

security guarantees for the audited smart

contracts. Users and stakeholders assume full

responsibility for any risks associated with the

deployment and use of these contracts.

